We can't find the internet
Attempting to reconnect
Something went wrong!
Hang in there while we get back on track
tensorflow changelog
Here's the scoop on the latest updates to our favorite machine learning libraries. Get ready for some cool new features, bug fixes, and a sprinkle of optimizations. Let's dive in! ๐
-
New feature: TensorBoard now has an
inference_latency_chart
! ๐ This new feature lets you visualize how long your model's inference takes, helping you make smarter optimization decisions. -
New feature: Say hello to per-channel quantization in LiteRT! This enhancement allows for more precise model optimization by applying different quantization scales for each tensor channel, improving accuracy in resource-constrained environments.
-
New feature: The Qualcomm compiler plugin for TensorFlow Lite now supports per-channel quantization parameters. This update brings greater flexibility and efficiency, especially for models that benefit from per-channel quantization techniques.
-
New feature: The
WhileLoopAllReduceCodeMotion
pass is now part of the XLA optimization toolkit. This addition could boost the performance of while loops by enabling more efficient code motion techniques. -
Bugfix: The XLA latency hiding scheduler got a tune-up to better handle annotated no-op instructions. The fix ensures these instructions wait for the whole annotation set to be ready before scheduling, improving performance.
-
Bugfix: We squashed a bug causing crashes in the XLA Latency Hiding Scheduler with non-standard async ops. The scheduler now handles complex dependencies more effectively, ensuring smooth operation.
-
Bugfix: Fixed a range analysis bug in XLA where operand ranges weren't multiplied correctly with constants. The updated logic ensures accurate range calculations, strengthening the reliability of the XLA service.
-
Improvement: TensorFlow's profiler just got a boost! It now supports sampling for inference profiles, making it easier to analyze inference performance with more detailed statistics.
-
Improvement: Essential StepEvents have been added for GPU inference profiles, enhancing the profiling capabilities of TensorFlow applications running on GPUs.
-
Chore: Clean-up time! The
--xla_gpu_experimental_enable_triton_softmax_priority_fusion
flag has been removed from the XLA GPU compiler's API, simplifying the codebase by eliminating unnecessary features.
That's all for now, folks! Keep those models running smoothly and efficiently. ๐
Here's the scoop on our latest updates, where we've been busy adding new features, squashing bugs, and refining our systems to make everything run smoother than ever. Check out the highlights below and see how we're making things better for you! ๐
New Features:
-
xla::Collectives API: We've rolled out the new
xla::Collectives
API, setting the stage for NVIDIA Collective Communications Library (NCCL) integration. This makes XLA more robust for parallel processing on GPUs, with support for both host and device-initiated collective operations. ๐ -
Greater OP Legalization: TensorFlow Lite's LiteRT framework now supports the "greater" operation, complete with new test data and build configurations. This addition enhances tensor comparison capabilities. ๐
-
Dynamic Shapes in Convolutions: StableHLO now supports dynamic shapes in 1D convolutions, offering more flexibility and aligning with modern machine learning needs. ๐
-
Ragged All-to-All in XLA: We've added asynchronous start and done phases for the "ragged all-to-all" operation, boosting XLA's efficiency in handling complex collective operations. ๐
-
Custom Options in IFRT: Users can now specify
custom_options
for runtime-specific execution, allowing more tailored execution parameters. ๐ ๏ธ -
Multi XSpace to InferenceStats Conversion: A new function transforms multiple XSpace instances into InferenceStats, enhancing TensorFlow's profiling framework for better inference performance insights. ๐
-
HLO Stats Tool: Introducing the HLO Stats Tool in TensorFlow's profiler for deeper performance analysis of high-level operations. ๐
Improvements:
- C++ Tree with Path API: We've transitioned the
tree_util.tree_flatten_with_path
andtree_map_with_path
APIs to C++, speeding up the pytree flattening process. โก
Bug Fixes:
-
Triton Dot Product Bug: Fixed a bug in Triton's dot product algorithm for
dot(inf, 1.0)
, ensuring correct results by addressing non-finite value summation. ๐ง -
Wheel Creation Logic: Resolved issues in TensorFlow's wheel creation logic when using pywrap rules, improving the packaging process. ๐ฆ
-
Graph Output Tensor Recognition: Corrected logic in TensorFlow Lite to ensure graph output tensors are recognized even when used by other Ops. ๐ ๏ธ
Chores:
- Obsolete TODO Removal: Cleaned up outdated TODO comments in the TensorFlow XLA compiler codebase, streamlining and clarifying the code. ๐งน
These updates are all about making your experience smoother, faster, and more efficient. Stay tuned for more exciting improvements and keep those feedbacks coming! ๐
Welcome to the latest updates! We've been busy adding some shiny new features and fixing pesky bugs to make your experience smoother and more efficient. Here's a rundown of what's new and improved:
-
New Feature ๐: Parallel compilation is now live for the XLA CPU backend, thanks to our new ORC TaskDispatcher. This means faster and more efficient JIT compilation, leveraging multi-threading to get things done in a snap!
-
New Feature ๐: TensorV1Attr support has been added to the flatbuffer_export and flatbuffer_operator, allowing for a more structured and efficient data representation in TensorFlow's MLIR framework. Now you can handle tensor attributes like a pro!
-
New Feature ๐: Introducing the VIFRT pass for converting between VIFRT versions. This nifty addition ensures compatibility and flexibility across different versions, making your development process smoother than ever.
-
New Feature ๐: Python bindings for VIFRT serialization are here! Now you can serialize and deserialize IFRT IR programs with ease, ensuring compatibility across versions and making advanced serialization features more accessible.
-
New Feature ๐ง: Say hello to the experimental C++ graph builder for TensorFlow Lite! This tool empowers developers to construct and manipulate machine learning models programmatically, enhancing TFLite's flexibility and usability.
-
Improvement ๐ ๏ธ: We've migrated the CpuCompiler from SimpleOrcJit to JitCompiler in the XLA backend for CPU. This upgrade promises better optimization and execution speeds, keeping things running like a well-oiled machine.
-
Improvement โ๏ธ: To prep for JIT compilation, we've enhanced the CpuCompiler by constructing the JitCompiler within it, setting the stage for more efficient compilation processes.
-
New Feature ๐ก: A sharding config has been added to XLA's HloModuleConfig, as part of the AutoFDO integration. This gives you better control over operation distribution, optimizing performance like never before.
-
Bugfix ๐: We've squashed a bug in the
MoveUserInstructionsIn
function that was causing compilation errors with conditional operations. Now it handles multiple users like a champ! -
Bugfix ๐: Fixed an async execution bug in transposed convolution operations for XLA CPU. The intermediate buffer now stays in scope, preventing any memory mishaps.
-
Bugfix ๐ง: The
tune_ctas
logic in GemmFusionAutotunerImpl has been restored, ensuring proper CTA tuning for GPU computations, especially on Hopper architectures. -
Chore ๐: Updated internal visibility settings for the
registry
library, ensuring access is managed effectively for Google-specific clients.
These updates are all about making your experience smoother, faster, and more powerful. Enjoy the new features and improvements, and keep an eye out for more exciting updates coming your way! ๐
Welcome to the latest round of updates! We've been busy bees ๐, adding some slick new features, squashing pesky bugs, and tidying up the codebase. Here's a rundown of whatโs new and improved:
-
New feature: ๐ We've added support for overriding cross-program prefetch behavior and filtering buffer intervals based on their usage in the XLA:TPU:MSA. These enhancements make memory management more flexible and efficient. Plus, we've included tests to make sure everything runs smoothly.
-
New feature: ๐ The HLO evaluator now supports explicit batch dimensions for gather and scatter operations. This change reserves necessary dimensions for tensors, making these operations more flexible and robust.
-
Improvement: ๐ ๏ธ Introducing the
AssertEq
wrapper! This nifty tool helps ensure function outputs match expected results, enhancing our assertion framework. We've also improved error checking in the TensorFlow Lite runtime by validating tensor types more reliably. -
New feature: ๐งฉ Say hello to
HloModuleInterface
andHloInstructionInterface
! These new interfaces provide a more organized way to manage HLO data, improving efficiency and performance metrics retrieval. -
New feature: โ๏ธ Weโve added a
RuntimeConfig
when loading SavedModels, allowing you to disable the tf2xla MLIR bridge. This update optimizes graph execution for better performance. -
Bugfix: ๐ Fixed a critical issue in
CalculatePostOrderScheduleHelper()
, ensuringkAsyncStart
instructions are correctly initialized. This fix prevents instructions from being processed out of order. -
New feature: ๐ The
HloUnaryInstruction
class is here to boost result accuracy for specific unary functions, enhancing precision in computations. -
Improvement: ๐ง Enhanced GPU GEMM fusions by allowing effective parameters and their broadcasts to be fused in the epilogues, optimizing performance.
-
New feature: ๐๏ธ A new
ToolParam
for the XNNPACK TFLite delegate lets you easily toggle the Slinky optimizer via command-line flags, giving you more control over performance tuning. -
Bugfix: ๐ก๏ธ Addressed a crucial issue in the GPU dot algorithm rewriter to handle infinity and NaN values correctly, ensuring accurate results in BF16 operations.
-
Bugfix: ๐ง Fixed the AlgebraicSimplifier to ensure it doesn't eliminate host offloading copies, maintaining the integrity of host memory operations.
-
Chore: ๐งน We've cleaned up by removing an unnecessary
gpu_types.h
inclusion intopk_kernel_test.cc
, streamlining the code and reducing compilation time.
We hope these updates make your experience even better! Keep exploring and enjoy the improvements. ๐
Welcome to the latest and greatest updates! We've been busy making some awesome improvements and squashing pesky bugs. Here's a rundown of the cool new features, improvements, and fixes we've rolled out:
New Features ๐
-
PJRT Buffer Magic: Say hello to
PJRT_Buffer_CopyRawToHost
in the PJRT C API! This nifty feature lets you copy raw data from device to host memory, making your GPU app data handling smoother than ever. Itโs a game-changer for high-performance computing and machine learning aficionados. -
HLO Interfaces: We've introduced
HloModuleInterface
andHloInstructionInterface
to spice up your HLO module and instruction management. These interfaces bring organization and efficiency to your TensorFlow profiling utilities with enhanced data handling. -
Dot Product Testing: The XLA GPU framework now includes a test for dot products with batch and contracting dimensions. This ensures robust backend support for your matrix operations, making sure everything runs like a well-oiled machine.
Improvements ๐
-
LLVM Update: We've synced up with the latest LLVM updates, ensuring our project stays sharp and up-to-date with the latest features and improvements.
-
GEMM Fusion Flexibility: Our GPU GEMM fusion now supports broadcasts of trivially-sized dimensions, like [1,n] to [1,m,n], thanks to PR #19112. This means more flexibility and efficiency in your matrix operations.
-
TFL Pass Migration: The
PushTransposeThroughEwisePass
has migrated to the new TFL pass mechanism, streamlining the code and making it easier to maintain. Plus, we've updated the command-line argument for consistency.
Bugfixes ๐
-
No Signature, No Problem: Fixed an issue in TensorFlow Lite where models without signatures were causing hiccups. Now, we pass a
nullptr
for models lacking function signatures, keeping everything running smoothly. -
Algebraic Simplifier Tweaks: We've ensured the AlgebraicSimplifier in XLA respects host offloading copies, preventing any unwanted eliminations and maintaining computation integrity.
-
Developer Guide Tweak: Fixed a formatting blip in
developer_guide.md
where<USER>
was misbehaving. It's now{USER}
, and the guide looks fab!
Chore ๐งน
- Code Cleanup: Tidied up
gpu_types.h
by removing unused type aliases. This decluttering enhances clarity and makes room for future awesomeness.
That's all for now, folks! Keep your eyes peeled for more exciting updates and improvements coming your way. ๐
Here's the latest scoop on our codebase updates! We've been busy bees, buzzing around to bring you some fantastic new features, improvements, and bug fixes. Let's dive right in! ๐
New feature: We've jazzed up the XLA framework by using the CUDA runtime API to accurately determine if two ranks are on the same host. This ensures more reliable local communication during collective operations, especially in multi-GPU setups. ๐
New feature: A new transformation pass is here! We've added a pass to outline an IFRT IR atom program into a module, enhancing the XLA framework's capabilities in handling IR atom programs. ๐
Improvement: TensorFlow Lite compiler now checks for infinity when folding max and min ops. This ensures that operations handle extreme floating-point values correctly, boosting robustness. ๐ช
New feature: You can now save output data from TFLite models as TensorFlow Example protocol buffers and output them to a file. This makes model evaluation and debugging a breeze! ๐
Improvement: Weโve added profiling to the ifrt-proxy client, enabling request-response trace tracking. This makes monitoring and analyzing RPC calls a piece of cake. ๐ฐ
New feature: Direct legalization for min
and max
operations is now available in TensorFlow Lite, streamlining the conversion process and enhancing performance. โก๏ธ
New feature: We introduced a pattern to reorder gather and cast ops in TensorFlow Lite for more efficient execution. Less work, more play! ๐ฎ
New feature: A new optimization pattern simplifies broadcasting and reshaping operations in TensorFlow MLIR, enhancing efficiency. Who doesn't love a good optimization? ๐ ๏ธ
Bugfix: We fixed a critical issue in JAX where input arrays weren't reshaped correctly, preventing crashes on TPU and ensuring correct outputs on GPU. Phew! ๐
Bugfix: Memory leaks in cuda_executor.cc
error paths are now a thing of the past. We've improved memory management to keep things running smoothly. ๐งน
Bugfix: Compatibility issues with Numpy 2.x in TensorFlow's numpy-like operations have been resolved. We're all set for the future! ๐ฎ
Chore: We tidied up by deleting status_test_util.h
after migrating all its users. A cleaner codebase is a happier codebase! ๐งผ
That's all for now, folks! Stay tuned for more exciting updates and improvements. Keep coding and keep smiling! ๐
Here's a delightful rundown of the latest and greatest changes, improvements, and fixes in our codebase. We've been busy integrating, optimizing, and squashing pesky bugs to make your experience smoother and more efficient. Let's dive into the details! ๐
-
New feature: We've integrated the StableHLO framework into TensorFlow's MLIR infrastructure. This major update focuses on transforming and legalizing quantization and HLO operations, enhancing compatibility and performance. ๐
-
New feature: Added support for unary element-wise operations in the MHLO to TFL conversion process. Now, operations like absolute value and trigonometric functions are seamlessly transformed, bolstering TensorFlow Lite's capabilities. ๐
-
Improvement: Exporting MLIR modules just got clearer! The name of the HLO module now matches the MLIR module name, ditching the default "main" to avoid confusion and conflicts. ๐
-
New feature: Memory management in XLA is stepping up! We've laid the groundwork for adding memory spaces to the
CompileOnlyClient
, paving the way for more sophisticated memory handling. ๐ง -
Improvement: FP8 windowed einsums with multiple all-gather dots are now supported. This enhancement optimizes FP8 operations within the XLA framework, thanks to a nifty shift in dequantization. ๐ฏ
-
Improvement: Casting operations between floats and integers in MLIR are now more efficient, thanks to new folding optimizations. Say hello to faster compilation! ๐
-
New feature: Introducing
GetSparseCoreId
to the TensorFlow profiler! This function extracts Sparse Core IDs from plane names, boosting TPU profiling capabilities. ๐ต๏ธโโ๏ธ -
New feature: We've added a pass to open the sharding of while op free variables. This helps optimize sharding strategies during HLO conversion, enhancing operation efficiency. ๐งฉ
-
Bugfix: Resolved an issue where "MakeExactCopy" didn't copy "known_graph_outputs_", ensuring all necessary output values are retained in copied graphs. ๐
-
Bugfix: Fixed integer overflow issues post-NumPy 2.0 update by refining type casting and array creation operations, maintaining compatibility with NumPy 1.x behavior. ๐ง
-
Chore: Cleaned up
pywrap_parallel_device.cc
by removing unnecessary TensorFlow C API headers, streamlining the codebase. ๐งน -
Bugfix: Addressed test failures under NumPy 2.x by directly calling
__array__()
for objects requiring a copy when converting to TF tensors. Compatibility restored! ๐ ๏ธ
These updates are all about making things run smoother, faster, and with fewer hiccups. Keep those updates coming, and happy coding! ๐
Welcome to the latest update! We've been busy bees ๐ making some exciting changes, adding new features, squashing bugs, and improving performance. Here's a rundown of what's new:
New Features
- Original Value Tracking: Introduced a pass that adds the
original_value
field to each operation in the HLO graph. This is a game-changer for value tracking within the graph, making it easier to manage and analyze computations. - cuDNN Custom Call Conversions: Added a pass to convert specific cuDNN custom calls into custom fusion operations. This allows JAX users to run selected computations as cuDNN kernels, optimizing performance on GPUs.
- Batch Dimension in Gather/Scatter: Now supporting batch dimensions in Gather and Scatter HLO syntax, enhancing data manipulation operations in XLA.
- BatchFunction Operation: Updated protocol buffer text files to include a new "BatchFunction" operation, allowing for more flexible batching of input tensors.
- AsyncWrapper: Introduced
AsyncWrapper
to wrap instructions into async blocks, enabling concurrent execution and potentially improving performance.
Improvements
- Additional Batch Padding Policies: Exposed new batch padding policies like "BATCH_DOWN" and "MINIMIZE_TPU_COST_PER_REQUEST" for more efficient batch processing.
- Async Dispatch for JAX CPU Backend: Enabled asynchronous dispatch for expensive computations on the JAX CPU backend, with an opt-out option for those who prefer the old synchronous behavior.
Bugfixes
- Pipelining with Sequential Extracts: Fixed a bug related to pipelining sequential extracts, ensuring only the induction variable of a loop can be replaced.
- Revert Changes in TensorFlow Lite GPU Delegate: Reverted a previous change to simplify the handling of the
kClFastRelaxedMath
compiler option, standardizing behavior across different GPU architectures. - Revert Changes in CUDA FFT Library: Reverted modifications to rename and update dependencies for the CUDA FFT library, ensuring proper initialization and integration.
Chores
- Automated Code Cleanup: Removed unnecessary TensorFlow C API headers from
pywrap_parallel_device.cc
, streamlining the codebase.
We hope these updates make your development experience smoother and more efficient. Happy coding! ๐
Hey there, code wranglers! We've got some exciting updates for you. Check out the latest and greatest changes that are making our codebase even more awesome. ๐
Improvements
- Streamlined Kernel Management: Combined
StreamExecutor::GetKernel
andStreamExecutor::CreateKernel
into a single methodStreamExecutor::LoadKernel
. This simplifies the interface and enhances memory management. ๐ - Efficient Operand Resharding: Optimized the partitioning of dot operations by directly resharding the rhs operand to match lhs and result tensor shardings, eliminating redundant rematerialization. ๐ฏ
- Enhanced GPU Operations: Introduced
IndexingMapAttr
toApplyIndexingOp
, improving the efficiency and correctness of GPU fusions in XLA. ๐ฅ๏ธ
New Features
- String Shape Kernel: Added registration for a Shape kernel that handles string tensors, enhancing TensorFlow's capabilities for string data processing on GPUs. ๐งต
- ASCII Art Memory Map: Introduced a function to print a compact 2D map of occupied heap memory over time as ASCII art, making debugging easier and more fun! ๐จ
- Long Polling for Error Propagation: Added long polling as a new way to propagate errors in the coordination service, improving robustness and responsiveness. ๐ต๏ธโโ๏ธ
- Gloo Support on macOS: Enabled Gloo to function on macOS using the libuv transport mechanism, expanding its compatibility. ๐
- Experimental Command Buffers: Added a flag to enable command buffers during profiling sessions in the XLA GPU backend, providing more flexibility. ๐งช
Bugfixes
- HLO Evaluator Stability: Fixed an issue where the HLO evaluator would dereference a disengaged optional, preventing potential runtime errors. ๐ ๏ธ
- Coordination Service Test: Addressed a data race in
coordination_service_test.cc
by implementing notifications for proper thread synchronization. ๐โโ๏ธ - oneDNN Crashes: Fixed crashes in oneDNN matmul, convolution, and layer norm tests by ensuring proper initialization of
operands_stack_alloca
arrays. ๐
Chores
- Model Builder Relocation: Moved the
model_builder
from TensorFlow Lite core to the TensorFlow compiler/converter module, streamlining the directory structure. ๐ฆ
That's all for now, folks! Keep coding and stay awesome! ๐ปโจ
Welcome to the latest updates! We've packed in some awesome new features, crucial bug fixes, and a few handy improvements. Let's dive into what's new!
New Features ๐
-
Integrate StableHLO at openxla/stablehlo@531816f0: We've integrated the StableHLO project from the OpenXLA repository. This update enhances the functionality and compatibility of the XLA framework with the StableHLO standard, improving the transformation of StableHLO to HLO operations and validating the conversion from CHLO to MHLO.
-
Graph Dumping in .pb Format: You can now dump TensorFlow graphs in both text and binary formats using the
TF_DUMP_GRAPH_FMT
environment variable. This feature adds flexibility and better integration options for users. -
Command-Line Flags for MLIR Lite Tools: Introduced a new command-line flags library for TensorFlow MLIR Lite tools. This simplified and dependency-free module is perfect for benchmarks and easier command-line argument handling.
-
Shardy Partitioner in ExecutableOptions: Added a new boolean field
use_shardy_partitioner
inExecutableOptions
. This allows developers to opt for the Shardy partitioning strategy, enhancing flexibility in the XLA library. -
UnfoldSplatConstantPass: Added the
UnfoldSplatConstantPass
to the MLIR framework before the HLO to TFLite legalization process. This pass prevents folding splat constants with broadcasts, which can cause bloated model sizes.
Bug Fixes ๐
-
Reverted UniqueChannelIdEnforcer: Reverted a previous change that introduced the
UniqueChannelIdEnforcer
. This reflects a shift in strategy for managing unique channel IDs within the XLA framework. -
Fix acos Decomposition: Corrected the decomposition of the
acos
function for non-complex arguments. The previous implementation incorrectly handled the case wherex == -1
, which should return ฯ (pi). -
AllReduceBlueConnect Crash Fix: Addressed a crash issue in AllReduceBlueConnect when multiple partitions are used. Now, the pass runs only with specific values for
CollectiveOpGroupMode
, improving robustness.
Improvements ๐
-
Runtime Pointer Sizes for Sorting: Enhanced the XLA CPU backend to support runtime pointer sizes for sorting elements. This update improves flexibility and efficiency in sorting operations.
-
LLVM Integration: Updated the TensorFlow MLIR framework to align with the latest LLVM changes. This integration enhances performance and reliability in quantization and type conversion functionalities.
-
Automated Code Changes: Made extensive modifications to the TensorFlow DTensor MLIR framework, improving distributed processing capabilities and optimizing performance.
Chores ๐งน
- Remove Unused cuda_stream.h: Cleaned up the codebase by removing the unused
cuda_stream.h
header file and associated functions. This helps streamline the framework and improve maintainability.
That's all for now! Stay tuned for more updates and happy coding! ๐
Hey there, awesome devs! Here's the latest and greatest from our codebase. Check out these exciting updates, bug fixes, and improvements. ๐
New Features
- Support i4 EmbeddingLookup in TFLite reference: Now you can use the
EmbeddingLookup
operation withTensorType_INT4
in TensorFlow Lite (TFLite). This means more flexibility and efficiency for your models. ๐ - Add external KV cache op for GenAI: Introducing an external key-value (KV) cache operation for TensorFlow Lite's experimental GenAI module. This enhances the management of external KV caches, crucial for AI applications. ๐ง
- [XLA:UNSTACKER] Detect effectively static dynamic-slice instructions: A new function to optimize loop unrolling by identifying static dynamic slices, boosting performance. ๐
- Add a method for looking up the memory space of a pointer: StreamExecutor now has a method to determine the memory space of a pointer, enhancing memory management. ๐พ
- [XLA:FFI] Add instantiation handler to XLA_FFI_Handler_Bundle: Expanding the XLA FFI API with an instantiate handler, giving you more control over the instantiation process. ๐ ๏ธ
Bugfixes
- Fix race condition in sparse optimizers: Ensures exclusive locks when modifying
var->tensor()
inEnsureSparseVariableAccess
to prevent segfaults and improve stability. ๐ - [XLA:GPU] Fix Triton codegen for
BroadcastOp
s of scalars: Ensures broadcasting rules are correctly enforced in the Triton verifier, preventing potential errors. ๐ก๏ธ - Remove affine fuzz test: Temporarily removed due to build issues with the current version of fuzztest. This keeps our build process smooth and error-free. ๐งฉ
Improvements
- Add physical device ordinal to buffers: Enhances resource management and tracking across different physical devices in the XLA framework. ๐
- Add support for non-trivial strides for conv in MHLO->TFL: Convolution operations in MHLO->TFL now support non-trivial strides, increasing flexibility and performance. ๐โโ๏ธ
- Automated Code Change: Streamlined dependencies and updated headers in the
grappler
module, enhancing optimization and performance. โ๏ธ
Chore
- Remove deprecated TfLiteOperatorCreateWithData function: Cleaned up the codebase by removing this deprecated function, simplifying the implementation. ๐งน
Keep up the fantastic work, and let's keep pushing the boundaries of what's possible! ๐
Hey there, fabulous developers! ๐ We've got some exciting updates and tweaks to share with you. Let's dive right into the latest changes:
New feature: ๐ Add support for atomic_rmw fadd
for bf16 on HOPPER
- Summary: This update brings in the magic of
atomic_rmw fadd
for bf16 data type on HOPPER CUDA compute capability within XLA:GPU and MLIR-based emitters. Now, you can perform atomic operations on bf16 data types with ease. A test case has been added to ensure everything runs smoothly on the HOPPER architecture.
Improvement: ๐ Avoid building hlo_runner_main.cc
twice
- Summary: We've streamlined the build process by moving the actual build into a shared library target and creating two binary targets that depend on it. This makes maintaining dependencies easier and more explicit. Say goodbye to redundant builds!
Improvement: ๐๏ธ Run fusion-wrapper pass before scheduling in XLA:GPU
- Summary: The fusion-wrapper pass now runs before scheduling in the GPU compiler. This change enhances the fusion and scheduling process, making it more efficient. Plus, there's a new test to ensure non-fused instructions are wrapped correctly.
New feature: ๐ Open source XLA passes for Shardy
- Summary: Shardy just got a major upgrade with new XLA passes! We've added new files, headers, and functions for exporting and importing operations and shardings. Test files are also included to ensure everything works perfectly.
Improvement: โก๏ธ Port concatenate instruction to Thunks in XLA:CPU
- Summary: Concatenate instructions are now ported to Thunks, with a fast concatenate option for better performance. Benchmarks show a 4% improvement in parallel concatenate performance and an 11% boost in CPU time. Fast concatenate without parallel processing shows a slight performance dip.
New feature: ๐ Add a basic test case for circular pipeline collective permute
- Summary: A new test case for circular pipeline collective permute has been added. It involves a simple computation using collective permute with source-target pairs and verifies the results. A more complex test case is outlined for future implementation.
New feature: ๐งธ Add a toy example for using Shardy
- Summary: A toy example for using Shardy in the XLA pipeline is now available. This includes changes to workspace files, BUILD files, a main file for Shardy optimization, and a test file with a simple MLIR test case. Perfect for getting started with Shardy!
New feature: ๐ง Add Thunk::ExecuteSession to control concurrent workers
- Summary: Control the number of concurrent workers processing XLA execute requests with Thunk::ExecuteSession. This helps manage task scheduling overheads for XLA programs with many tiny thunks. Unit tests ensure the locking mechanism works as expected.
Bugfix: ๐ Remove support for CUDA versions below 12.3 in XLA
- Summary: Weโve streamlined XLA by removing support for CUDA versions below 12.3. This update affects multiple files related to GPU functionality, profiling, and testing, aligning XLA with the latest CUDA technology for improved performance.
Bugfix: ๐ Revert fix for 3 DeadCode findings
- Summary: Reverted a previous fix that addressed 3 DeadCode findings related to DelayKernelIsSupported, LaunchDelayKernel, and UnsupportedGpuFeature. The revert undoes changes made to gpu_timer_kernel_rocm.cc and gpu_types.h.
Bugfix: โ๏ธ Only use the kernel threadpool if it is enabled
- Summary: Added a conditional check to use the kernel threadpool only if it is enabled. This ensures optimal performance and resource utilization when working with TensorFlow Lite delegates.
Chore: ๐งน Make stablehlo tests private
- Summary: The visibility of stablehlo tests has been changed from public to private. This keeps these tests restricted to their intended scope, maintaining the integrity and organization of the codebase.
That's all for now, folks! Keep coding and stay awesome! โจ
Here's a rundown of the latest changes and improvements:
New Features
- [xla:ffi] API to Update CallFrame with Runtime Values: ๐ Added an API to update CallFrame with new runtime values (buffer pointers), enhancing the flexibility of XLA's foreign function interface.
- [XLA:GPU] Deterministic Flash Attention Backward Implementation: ๐งฉ Introduced deterministic flash attention backward implementation in XLA:GPU, providing more control and consistency.
- [XLA:CPU][oneDNN] F16 Convolutions on Supported CPUs: ๐ Enabled F16 convolutions on supported Intel CPUs, boosting performance and efficiency.
- [XLA:CPU][oneDNN] Matmul-Bias-Add Fusion: ๐ฅ Enabled fusion of matmul followed by bias-add and binary-add operations in XLA:CPU, optimizing performance.
- Testing Utility for v2 API Test Data Path: ๐งช Added a utility for managing test data paths for the v2 API in TensorFlow, laying the groundwork for future testing needs.
- Support for uint8_t Dot Operation Tests: ๐ค Added support for uint8_t dot operation tests and corresponding HLO evaluator support, expanding the library's capabilities.
Improvements
- HLO Deduplication and Execution Threads Test: ๐ ๏ธ Added a comprehensive test for HLO deduplication and execution threads in XLA, ensuring robust functionality.
- Recursive Work Splitting for Thunk Executor Tasks: ๐๏ธ Introduced recursive work splitting to launch thunk executor tasks, improving performance and avoiding bottlenecks.
Bugfixes
- [XLA:FFI] Catch Exceptions in User FFI Calls: ๐ Added a defensive try/catch mechanism to handle exceptions in user FFI calls, enhancing reliability.
- Fix for Execution Stream Assignment Test: ๐ง Fixed the constructor initialization error in the execution_stream_assignment_test, ensuring the test runs successfully.
- Removal of mlir2exec Test: ๐งน Removed the mlir-tflite-runner binary and related test utilities, indicating a cleanup or restructuring of the MLIR Lite module.
Chores
- Split Definitions from reduced_precision_support.h: ๐ Split definitions into a new file,
reduced_precision_metadata.h
, for better organization and maintainability.
These updates bring a mix of new features, improvements, bug fixes, and organizational changes, aimed at enhancing the performance, reliability, and maintainability of the XLA and TensorFlow projects. ๐
Hey there, awesome developers! We've got some exciting updates and improvements to share with you. Check out the latest changes below:
New Features ๐
-
Integrate StableHLO at openxla/stablehlo@dd48ec58: We've integrated StableHLO, introducing new operations like
UniformDequantizeOp
andUniformQuantizeOp
along with their inference and verification functions. This brings enhancements to uniform quantization and all-to-all operations. ๐ -
Add num_warps to BlockLevelFusionConfig: A new field, "num_warps," has been added to the BlockLevelFusionConfig message in the GPU backend, along with a method to convert the struct to proto. This improves GPU backend settings configuration. ๐ ๏ธ
-
Support for CollectivePermute thunk: We've added support for the CollectivePermute thunk in XLA for CPU, enabling all collective operations to be executed using thunks. ๐
-
Shardings for CaseOp and IfOp: This update adds shardings for implicit operands and return values of CaseOp and IfOp, ensuring correct sharding settings based on input parameters. ๐
-
Layout method for BasicStringArray: Implemented the
layout
method for the BasicStringArray class, adding functionality to handle the layout ofBasicStringArray
objects. ๐
Improvements โจ
-
Split DotThunk for parallel compilation: The DotThunk implementation in XLA CPU service now supports parallel compilation, optimizing matrix multiplication operations. ๐ช
-
Profiling enhancements with NVTX: Named threads, CUDA devices, and CUDA streams in the Nsight Systems UI for a better profiling experience. ๐ฅ๏ธ
-
Memcpy function restructuring: Moved the
StreamExecutor::Memcpy
function to theStream
and its derived classes, streamlining the code and improving efficiency. ๐
Bugfixes ๐
-
Prevent XLA crash if PATH variable not set: Addressed an issue where XLA would crash if the PATH environment variable was not set, now providing an error message instead. ๐ซ
-
Hashable Interval & IndexingMap: Made the Interval and IndexingMap classes properly hashable, ensuring they can be used in containers and other data structures. ๐
-
Stop using xla/statusor.h: Updated various files to directly include
tsl/platform/statusor.h
instead ofxla/statusor.h
, which now only contains an alias forabsl::Status
. ๐
Chores ๐งน
- Clean-up before removing tiling: Cleaned up code related to XLA:GPU and MLIR-based indexing in preparation for removing tiling functionality. ๐งฝ
Stay awesome and keep coding! ๐ฉโ๐ป๐จโ๐ป
Welcome to our latest update! We've been busy adding some awesome new features, squashing pesky bugs, and making improvements to keep everything running smoothly. Here's the lowdown on what's new and improved:
### New Features
- **Asynchronous Launch for HostKernel** ๐: We've introduced async launch to HostKernel and employed Eigen device to parallelize kernel execution. This means better resource utilization and faster computations on the CPU platform.
- **StableHLO Integration**: Integrated StableHLO at openxla/stablehlo@dd48ec58, adding new operations for uniform quantization and all-to-all operations. This boosts the functionality and efficiency of our operations.
- **Int4 Support in Dequantize Op**: Added support for int4 in the dequantize operation, including per-channel dequantization. This enhances the flexibility and functionality of TensorFlow Lite.
- **'decompose_optionals' Pass**: Introduced a new pass to decompose optional operations into simpler identity operations, improving code readability and maintainability.
- **Aliasing Semantics for Nested Fusions**: Added aliasing semantics for nested fusions, enhancing the accuracy and functionality of fusion analysis in the XLA service.
### Improvements
- **Recursive Work Splitting for Host Tasks**: Implemented recursive work splitting to submit host tasks, significantly improving wall time for task submission into a thread pool.
- **JAX Builds Centralization**: Moved JAX builds to build.py, streamlining the build process and improving test environments for JAX_CPU and JAX_GPU.
- **Stream Dependency Management**: Eliminated StreamExecutor::CreateStreamDependency by consolidating its code into Stream and its derived classes, optimizing stream dependency management.
### Bugfixes
- **Revert Changelist 641306427**: Reverted a previous change, updating tensor types in the CastOperationParser test to ensure correct operation.
- **Float Conversion Fixes**: Addressed issues with float conversions for fp8 and u64, fixing missing lowerings and incorrect upper bounds to resolve unary_ops_test_gpu.
- **Revert c2e7e9f6c3f4d4937d8145f988ea74818e000ecc**: Reverted changes that removed references to Google's Abseil library, restoring functionality related to remote tensor handles.
### Chores
- **LLVM Integration**: Updated LLVM usage to match the latest commit [7476c20c481c](https://github.com/llvm/llvm-project/commit/7476c20c481c), ensuring we are using the most up-to-date version for development.
Stay tuned for more updates and happy coding! ๐
Hey team! Check out the latest and greatest updates to our codebase. We've got some cool new features, important improvements, and essential bug fixes. Dive in and see what's new! ๐
New Features
-
Support for
conditional()
with manual subgroups inspmd_partitioner
: Now you can handle conditional operations with manual subgroups, maintaining manual sharding where needed. This update includes changes toSpmdPartitioningVisitor
and new test cases to validate this functionality. ๐ -
Basic DAG Executor Implementation for XLA CPU: Introducing a basic Directed Acyclic Graph (DAG) executor for the XLA CPU service. This helps in executing thunks concurrently in a thread pool, ensuring correct ordering and execution. ๐งฉ
-
Initial Implementation of ThunkExecutor: A new
ThunkExecutor
class is here! It builds a DAG defining execution order based on buffer uses, complete with methods and tests to ensure everything runs smoothly. ๐ ๏ธ -
Runtime Simulator for HLO Module Execution Time: A new simulator predicts execution time for HLO modules, taking into account nested loop trip counts. This helps in optimizing execution time estimates. โฑ๏ธ
-
ScratchAllocator in External FFI API: Introducing
ScratchAllocator
for efficient device memory allocation and deallocation in XLA's external FFI API. This improves overall usability and performance. ๐พ
Improvements
-
Simplified Code in
dynamic_update_slice
: Weโve streamlined the code by removing unnecessary template usage and converting indices intoint64
before processing. This reduces the target binary size and optimizes performance. ๐ -
Export XLA:FFI Handlers as C Function Symbols: A new macro allows exporting XLA:FFI handlers as C function symbols, making it easier to work with FFI implementations in shared libraries. ๐ง
-
Using Eigen Thread Pool for ThunkExecutor Tasks: ThunkExecutor tasks now utilize the Eigen thread pool, addressing mutex contention points and improving performance nearly linearly with the number of threads. ๐๏ธ
Bug Fixes
-
Correct Propagation of Deserialization Errors: Weโve fixed the deserialization process to correctly propagate errors from
HloProgramSerDes
, ensuring better error handling and message communication. ๐ ๏ธ -
Vectorization with Modulo Operations: Fixed an issue where vectorization didnโt work properly with modulo operations. Now, both
(a mod b) * x
and(a * x) mod b
are handled correctly. ๐งฎ -
Hash Function Compatibility with Numpy 2.0: Addressed a failure in the hash function with Numpy 2.0. The hash calculations now use Numpy's
uint64
data type for better compatibility. ๐
Chores
- Removed Dead Code in XLA:GPU: Cleaned up the codebase by removing unused code related to
MockNcclTopoModel
fromGpuExecutableRunOptions
. This makes the code cleaner and easier to maintain. ๐งน
That's all for now! Keep coding and stay awesome! ๐ปโจ
Welcome to the latest change log! We've been busy making some exciting updates and improvements. Here's a rundown of what's new, fixed, and improved:
New Features
-
Freeze API for Device Tensors ๐ง: Introducing a
Freeze()
API to release host memory for device tensors in TensorFlow. It decides whether to release a tensor based on its usage by CPU/Host operations. This helps in managing memory more efficiently by freeing up resources used solely by the device. -
Shard-as Propagation Support ๐: Added support for shard-as propagation with unspecified dimensions in the XLA:SPMD framework. This update ensures better handling of sharding instructions and enhances the propagation process.
-
GemmDegenerateDimRemover Pass: A new pass called
GemmDegenerateDimRemover
has been added to the XLA service for GPU. This pass removes degenerate dimensions introduced byGemvRewriter
, optimizing matrix-vector multiplications. -
Remove Unused Dimensions in IndexingMap: A method to remove unused dimensions from the IndexingMap class in the XLA:GPU service has been introduced. This helps in cleaning up and optimizing representations by removing unused dimensions.
-
HloAnyOf Function ๐: Added a new traversal function called
HloAnyOf
to the XLA:GPU codebase. This function provides a flexible way to traverse HLO nodes without needing additional adaptors, making the codebase more user-friendly.
Improvements
-
Multi-threading in tf-data Module ๐งต: We've introduced multi-threading to run the flat map function in TensorFlow's tf-data module. This change boosts the efficiency and performance of processing input datasets by using multiple threads.
-
Memory Term Reduction Algorithm: A simpler and more effective algorithm for reducing memory terms has been implemented. This update uses ActivePrim pairs instead of LiveAndPrim pairs, making the merging of overlapping intervals more efficient.
-
Remove Unused Dims and Symbols in XLA:GPU: A method to remove both unused dimensions and symbols has been added to the XLA:GPU IndexAnalysis module. This optimization reduces redundancy and improves performance.
Bug Fixes
-
Early Error for Coordination Service Shutdown: Fixed an issue where a barrier request after the coordination service shutdown would proceed. Now, it returns an error early, ensuring proper handling of such requests.
-
Close Host Callback Queues: Explicitly closing host callback queues inside
IfrtBackend
destruction to avoid potential deadlocks caused by blocked executions. -
Unpropagatable Dots in Space-to-Batch Conversion: Marked dots as unpropagatable during space-to-batch conversion to prevent issues related to dot propagation post layout assignment.
Chores
- Remove Deprecated MLIR Codegen: Removed deprecated XLA:CPU MLIR-based codegen parts to clean up the codebase and streamline the compilation pipeline.
That's all for now! Stay tuned for more updates and improvements. ๐
Welcome to the latest change log! We've been busy adding some fantastic new features, improving existing functionalities, and squashing pesky bugs. Here's the scoop:
New Features ๐
- Max IDs and Unique IDs Operation: Added a new operation called
TF_GetStatsFromListOfSparseCoreCooTensorsOp
to compute the max_ids and max_unique_ids from a list of SparseCoreCooTensors. This includes unit tests to ensure accuracy and functionality. - Convert to Sparse Core CSR Wrapped COO Format: Introduced the
ConvertToSparseCoreCsrWrappedCooTensorOp
operation. This converts a sorted COO tensor into a sparse core CSR wrapped COO format, optimizing the handling of sparse tensors. - PartialReduce Custom Call in Auto-Sharding: Added support for the PartialReduce custom call op in auto-sharding, enhancing the generation of strategies for PartialReduce operations.
- Nested Tuples in BorrowingLiteral: Added support for nested tuples in
BorrowingLiteral
, allowing more flexibility when working with complex data structures in XLA. - Composite Ops in TFLite Flatbuffer Schema: Added support for Composite ops in the TFLite flatbuffer schema, introducing the necessary infrastructure for the StableHLOComposite operation.
Improvements ๐
- Multiple Epilogues in Fusion Process: Now each reduction group can have its own epilogue in the fusion process, enhancing flexibility and customization.
- Python Bindings for TensorFlow to StableHLO Tooling: Added Python bindings to enable the conversion of TensorFlow SavedModel to StableHLO, providing more flexibility in specifying input parameters and output paths.
- Cache Dataset Random Access Iterators: Enhanced support for saving and loading cache dataset random access iterators, ensuring that cached elements can be accessed and restored efficiently.
Bug Fixes ๐
- TPU Device Check in MlirBridgePass: Reintroduced the TPU device check in
MlirBridgePass::GetPassState()
, unblocking graphs that target TPU without replication. - GpuAlgebraicSimplifier: Fixed a bug in the
GpuAlgebraicSimplifier
related to determining if operands of a dot operation are vectors. - Replace
absl::make_unique_for_overwrite
: Updated the code to usestd::make_unique
instead ofabsl::make_unique_for_overwrite
, aligning with standard C++ practices.
We hope you enjoy these updates and improvements! Keep coding and stay awesome! ๐โจ
Hey there, code wranglers! We've got a bunch of updates to share with you. From new features to bug fixes, here's the latest scoop on what's been happening under the hood. ๐
New feature
- Containers with CUDA 12.3 and CUDNN 8.9: Added new containers with CUDA 12.3 and CUDNN 8.9. This update makes sure you can build manylinux 2014 compliant cross-compilers targeting compatible glibc and system libstdc++. ๐
- Weight-only quantization: Introduced weight-only quantization for convolution and dot_general operations. This adds support for the
weight_only_ptq
method, making your deep learning models leaner and meaner. ๐๏ธโโ๏ธ - CalibrationStatisticsSaver op: Added a new op definition to replace the
CalibrationSingleton
, aggregating and saving statistics to files. This op is stateful and designed to run on the CPU, making it easy to lift to outer functions. ๐ - Async dynamic slicing: Implemented async dynamic slicing for host memory offloading on GPU. Dynamic slicing instructions are wrapped in a fusion node, allowing for asynchronous execution. ๐
- StableHLO integration: Integrated StableHLO at openxla/stablehlo@714d9aca, updating various functions and constants. ๐ ๏ธ
Improvement
- Variable dtype and shape storage: Enhanced
IfrtRestoreTensorRegistry
to store variable dtype and shape, improving tensor restoration and lookup during execution. ๐ง - Global shuffling for memory cache dataset: Added support for global shuffling in the memory cache dataset, improving data processing capabilities. ๐
- Memory Term Reducer: Augmented the Memory Term Reducer to merge both primitives and groups, enhancing memory management and optimization. ๐งฉ
Bugfix
- Convert-memory-placement-to-internal-annotations: Removed a check for single user of an operand, allowing the program to process operands with multiple users. ๐ง
- LLVM integration: Updated LLVM usage to match the latest commit version, ensuring compatibility and stability. ๐ก๏ธ
- Duplicate dependency in TSL: Removed a duplicate 'clog' dependency, streamlining the code and optimizing dependency management. ๐๏ธ
Chore
- Remove unused workflow: Cleaned up the codebase by removing an outdated "A/B Diff Performance Benchmarking" workflow. โ๏ธ
That's all for now! Keep on coding and stay tuned for more updates. Happy coding! ๐
Here's the latest and greatest from our development team! Check out the awesome new features, improvements, and bug fixes we've rolled out:
New Features
-
IndexFlatMapDataset ๐
- Introducing
IndexFlatMapDataset
, a new dataset operation in TensorFlow. It's likeflat_map
but with global shuffling! Users need to provide anindex_map_fn
function, which returns a tuple of (element index, offset) for the unflattened dataset. Enhances dataset manipulation with global shuffling support.
- Introducing
-
Unbounded Dynamism Tests ๐งช
- Added tests for unbounded dynamism in
ReducePrecisionOp
,ShiftLeftOp
, andComplexOp
. These tests ensure that these operations handle precision reduction, shifting, and complex number operations correctly, even with varying shapes and broadcast dimensions.
- Added tests for unbounded dynamism in
-
IfrtServingExecutable Host Callback Execution ๐
- Added support for executing host callbacks in
IfrtServingExecutable
. This includes building, grouping, and executing host callbacks synchronously, along with necessary tests to ensure functionality.
- Added support for executing host callbacks in
Improvements
-
Unpack Quantized MHLO Ops ๐ง
- Unpacked per-channel hybrid quantized MHLO ops to float ops. This includes extensive modifications and tests to ensure correct handling of scales and zero points in symmetric and asymmetric quantization cases.
-
Composite Lowering for aten.avg_pool2d ๐
- Added a composite lowering pass for
aten.avg_pool2d
in the TensorFlow compiler MLIR Lite stablehlo module. This includes utility functions and updates to various files to handle average pooling operations.
- Added a composite lowering pass for
-
Global Shuffling for IndexFlatMapDataset ๐
- Enhanced
IndexFlatMapDataset
with global shuffling support. This includes updates to ensure compatibility with random access for all upstream transformations and new test cases to validate the functionality.
- Enhanced
Bug Fixes
-
PjRtBuffer Dependency Handling ๐ ๏ธ
- Updated
DonateWithControlDependency
inPjRtBuffer
to usePjRtFuture<>
for passing dependencies. This includes temporary adaptor functions and changes across multiple files to ensure compatibility.
- Updated
-
HloComputation Struct Optimization ๐๏ธโโ๏ธ
- Removed the redundant
instruction_indices_
fromHloComputation
, reducing the struct size and reorganizing it for better efficiency.
- Removed the redundant
-
Attribute Fix for MSVC ๐ฉ
- Replaced
__attribute__((unused))
with[[maybe_unused]]
inPluginProgramSerDes
andPluginCompileOptionsSerDes
to fix an MSVC error.
- Replaced
Chores
- Internal Package Group Update ๐ฆ
- Modified the internal package group in the tensorflow/BUILD file, adding a new package group for "//waymo/accelerator/...". This helps in better organizing and managing the codebase.
Stay tuned for more updates and keep coding! ๐